

CHARACTERISTICS

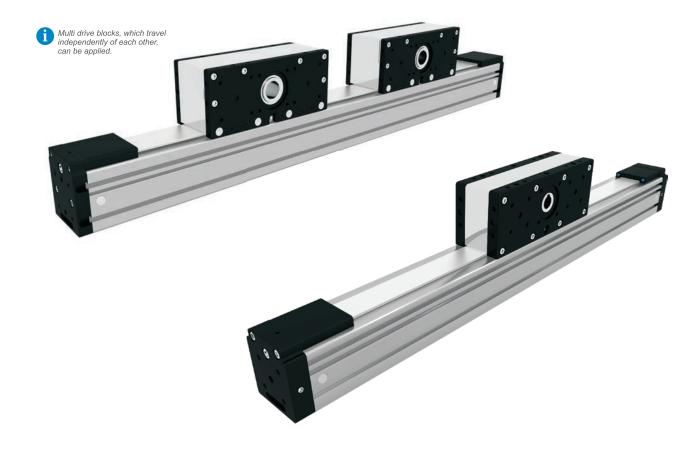
The **MTJZ** series contains Z-axis Linear Units with toothed belt drive, integrated Ball rail system and compact dimensions. This Linear Units provide high performance features such as, high speed, good accuracy and repeatability by vertical applications.

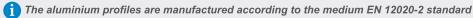
They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the linear units MTJZ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

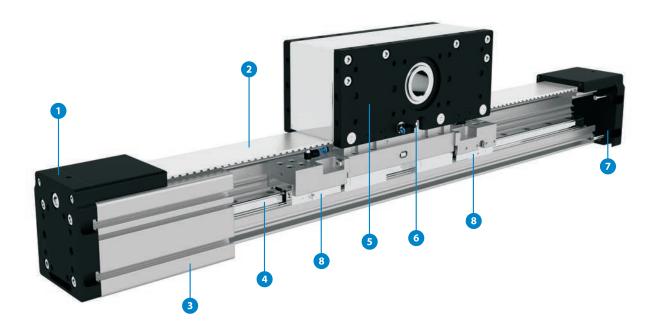

The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations


The aluminum Profile includes T-slots for attaching sensors and switches. Also, a Reed switch can be used here.

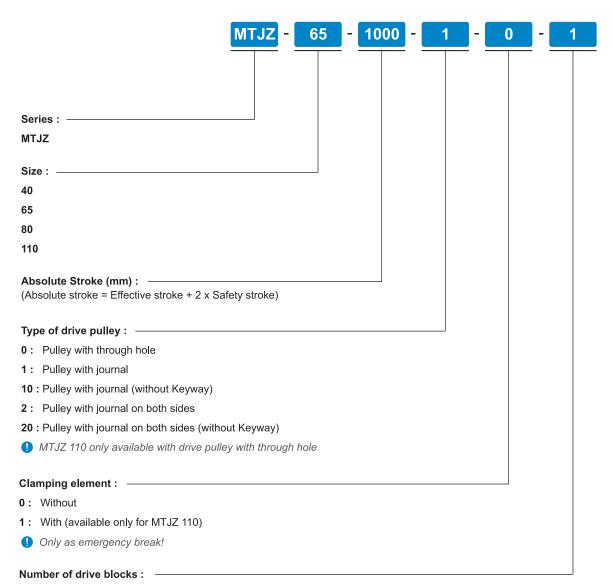
The drive block provides the possibility to attach a Motor or Gearbox housing and additional accessories on it.

Central lubrication port on the drive block allows easy re-lubrication of the Ball rail guide.

For the linear units MTJZ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm



STRUCTURAL DESIGN

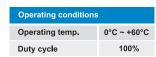
- **1 -** Tension End with integrated belt tensionin system
- 2 AT polyurethane toothed belt with steel tension cords3 Aluminium profile-Hard anodized
- 4 Linear Ball Guideway
- 5 Drive block with pulley, Motor flange; with built in Magnets
- 6 Central lubrication port; both sides
 7 Tension End with integrated belt tensioning system
 8 Clamping and braking element for linear guideway

HOW TO ORDER

The stated number specifies the number of drive blocks on one Linear unit

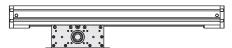
General technical data

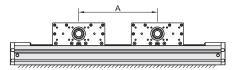
Linear Unit	Drive block length	i Dynamic load capacity	i Dyr	amic mor	ment	Mass of drive block	Maximum Repeatability	Max. length	3 Max. length	3 M: Str	ax. oke	Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	² (Version 1) Lmax [mm]	² (Version 2) Lmax [mm]	² (Ver. 1) [mm]	² (Ver. 2) [mm]	
MTJZ 40	120	4610	28	120	120	0,95	±0,08	1000	3000	792	2792	25


¹For minimum stroke below the stated value in the table above please contact us.

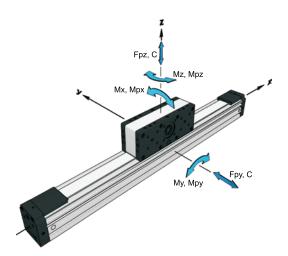
Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs = 5.0)


Modulus of elasticity: $E = 70000 \text{ N/mm}^2$


For operating temperature out of the presented range, please contact us.

²Mounting versions


Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive block travels

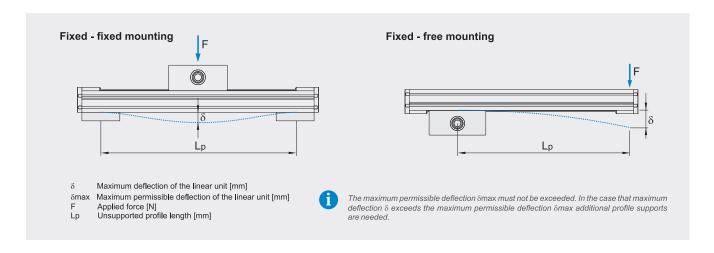
Multi drive blocks, which travel independently of each other, can be applied. For ordering code please contact us.

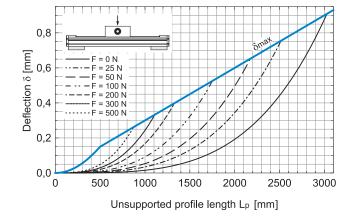
Drive and belt data

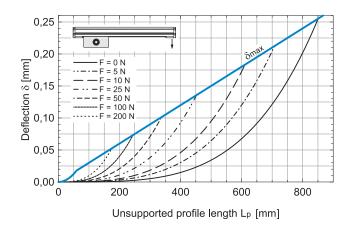
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s²]
MTJZ 40	5	3,6	0,2	99	31,51	AT3	20	230	225000	70

^{*}The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation.

Mass and mass moment of inertia

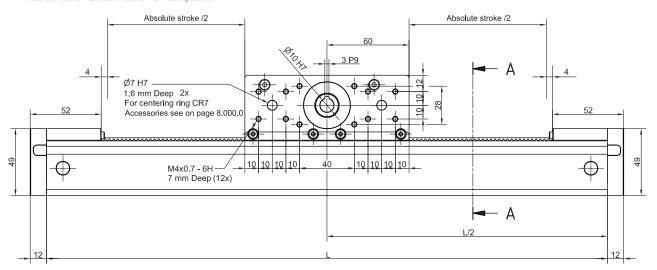

Linear Unit	Mass of linear unit	Mass moment of inertia of drive block		noment of ertia
	[kg]	[10 ⁻⁴ kg * m²]	ly [cm ⁴]	lz [cm ⁴]
MTJZ 40	1,7 + 0,0023 * Stroke [mm]	2,3 + 0,0058 * Stroke [mm]	9,8	11,6

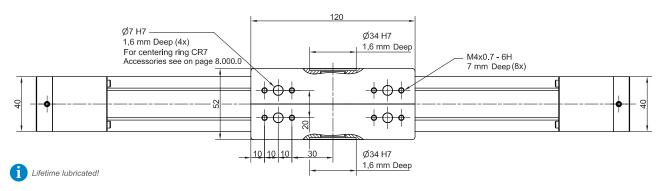



³For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valied for multi drive block (equation of defining the linear unit length for particular size of the linear unit needs to be used).

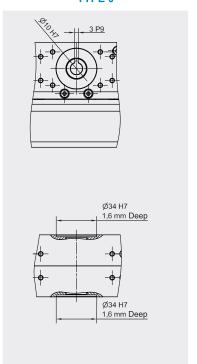
^{**}For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

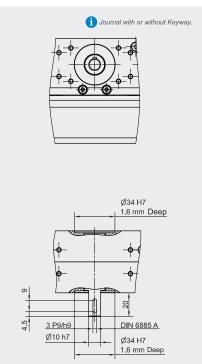
Deflection of the linear unit



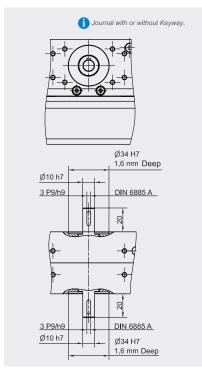


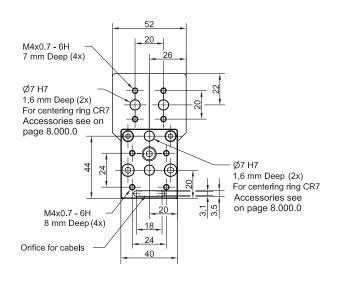
Linear Unit doesn't include any safety

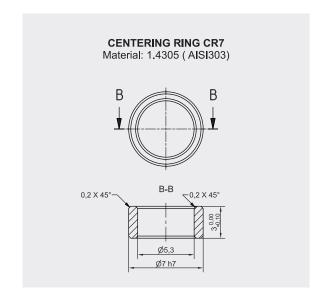

Absolute stroke = Effective stroke + 2 x Safety stroke.

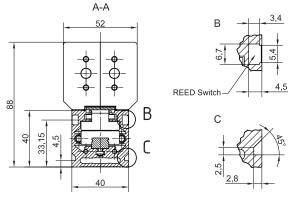


All dimensions in mm; Drawings scales are not equal.



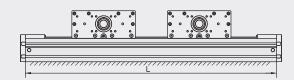



TYPE 1



TYPE 2

All dimensions in mm; Drawings scales are not equal.


Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 208 mm

Ltotal = L + 24 mm

Multi drive block

L = Effective stroke + 2 × Safety stroke + 120 × n_b + 88 mm

n_b - number of drive blocks

Ltotal = L + 24 mm

General technical data

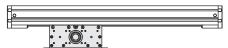
Linear Unit	Drive block length	i Dynamic load capacity	(i) Dyn	amic mor	nent	Mass of drive block	Maximum Repeatability	3 Max. length	3 Max. length	3 Ma Str		Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	² (Version 1) Lmax [mm]	² (Version 2) Lmax [mm]	² (Ver. 1) [mm]	² (Ver. 2) [mm]	
MTJZ 65	200	19800	158	1025	1025	3,2	±0,08	1200	6000	880	5680	40

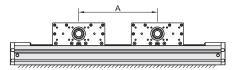
¹For minimum stroke below the stated value in the table above please contact us.

1

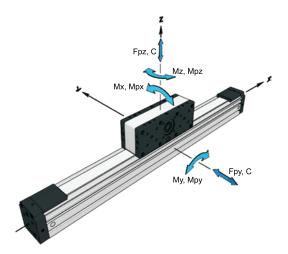
Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)


Modulus of elasticity: $E = 70000 \text{ N/mm}^2$


For operating temperature out of the presented range, please contact us.

²Mounting versions


Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive block travels

Multi drive blocks, which travel independently of each other, can be applied. For ordering code please contact us.

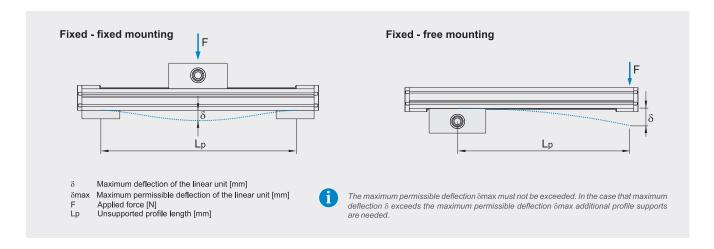
Drive and belt data

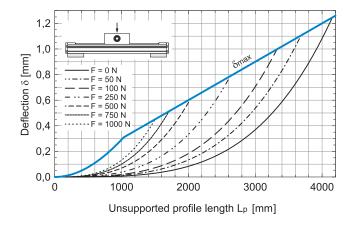
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s²]
MTJZ 65	5	13,1	0,9	165	52,52	AT5	32	500	600000	70

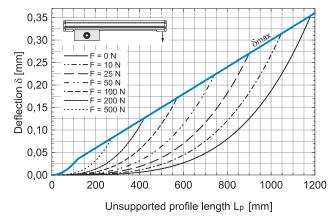
^{*}The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation.

Mass and mass moment of inertia

Linear Unit	Mass of linear unit	Mass moment of inertia of drive block		noment of ertia
	[kg]	[10 ⁻⁴ kg * m²]	ly [cm ⁴]	Iz [cm ⁴]
MTJZ 65	5,7 + 0,0054 * Hub [mm]	18,9 + 0,0374 * Hub [mm]	59,7	74,4

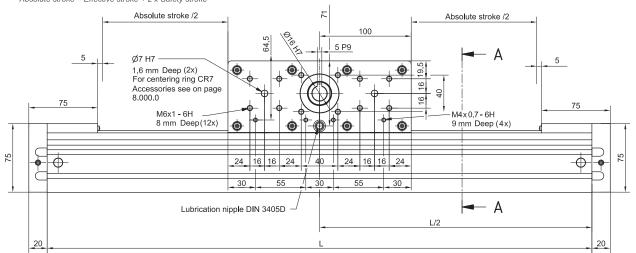


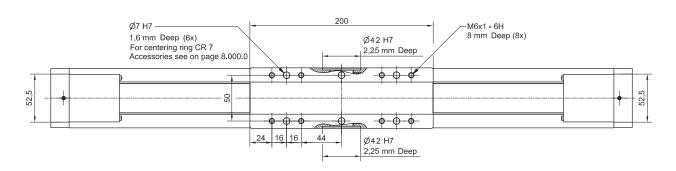



³For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valied for multi drive block (equation of defining the linear unit length for particular size of the linear unit needs to be used).

^{**}For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

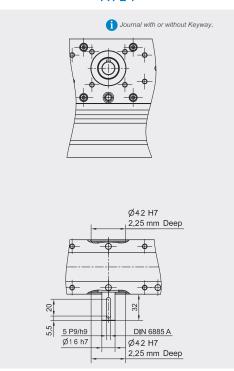
Deflection of the linear unit



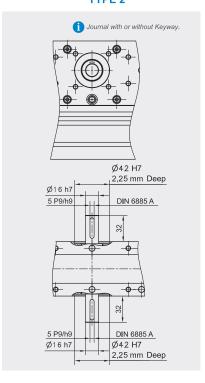


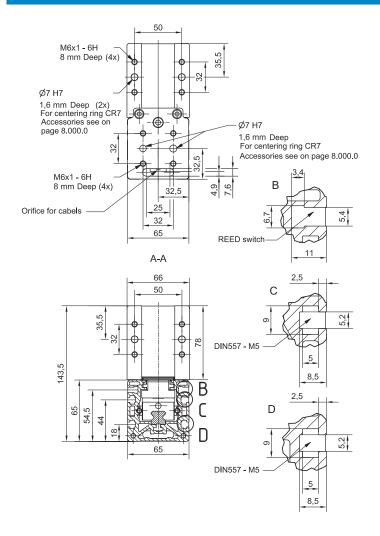
Linear Unit doesn't include any safety stroke.

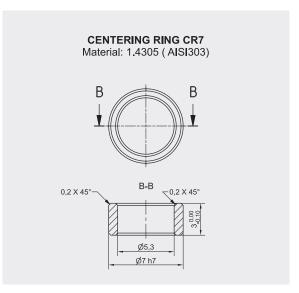

Absolute stroke = Effective stroke + 2 x Safety stroke



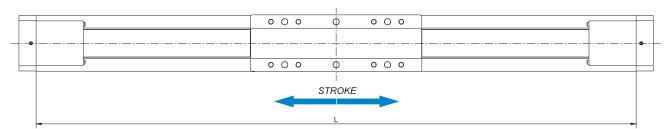
All dimensions in mm; Drawings scales are not equal.


TYPE 0

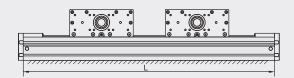



TYPE 1

TYPE 2


0

All dimensions in mm; Drawings scales are not equal.


Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 320 mm

Ltotal = L + 40 mm

Multi drive block

L = Effective stroke + 2 × Safety stroke + 200 × n_b + 120 mm

n_b - number of drive blocks

Ltotal = L + 40 mm

General technical data

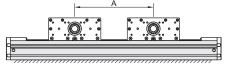
Linear Unit	Drive block length	i Dynamic load capacity	i Dyr	amic moi	ment	Mass of drive block	Maximum Repeatability	³ Max. length	3 Max. length	3 Ma Str		Min. Stroke
			Mx	My	Mz			² (Version 1)	² (Version 2)	² (Ver. 1)	² (Ver. 2)	
	Lv [mm]	C[N]	[Nm]	[Nm]	[Nm]	[kg]	[mm]	Lmax [mm]	Lmax [mm]	[mm]	[mm]	[mm]
MTJZ 80	250	34200	370	2565	2565	4,9	±0,08	1500	6000	1118	5618	55

¹For minimum stroke below the stated value in the table above please contact us.

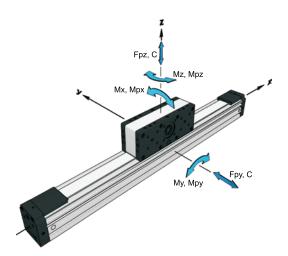
Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs = 5.0)

Modulus of elasticity: $E = 70000 \text{ N/mm}^2$


For operating temperature out of the presented range, please contact us.

²Mounting versions


Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive block travels

Multi drive blocks, which travel independently of each other, can be applied. For ordering code please contact us.

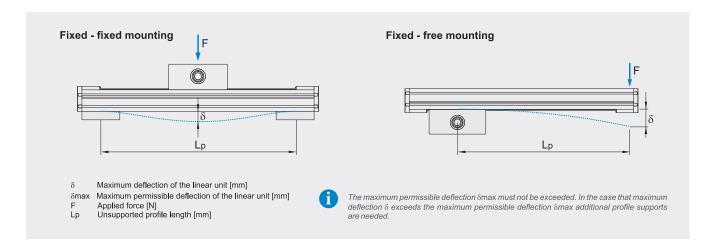
Drive and belt data

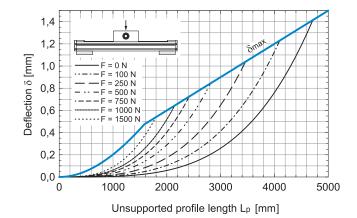
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s²]
MTJZ 80	5	29,4	1,4	210	66,84	AT5	50	880	960000	70

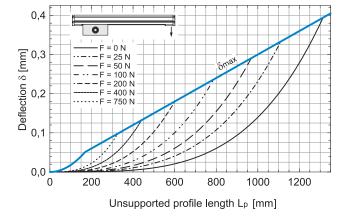
^{*}The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation.

Mass and mass moment of inertia

Linear Unit	Mass of linear unit	Mass moment of inertia of drive block		noment of ertia
	[kg]	[10 ⁻⁴ kg * m²]	ly [cm ⁴]	Iz [cm ⁴]
MTJZ 80	9,7 + 0,0083 * Stroke [mm]	60,5 + 0,0922 * Stroke [mm]	129,1	173,4

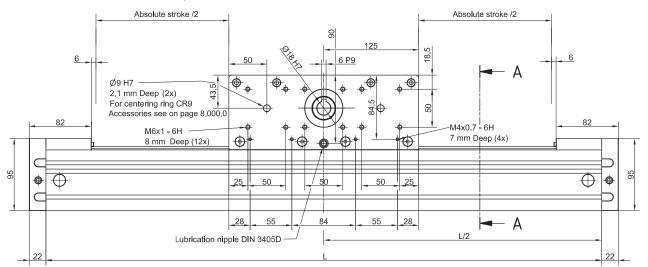


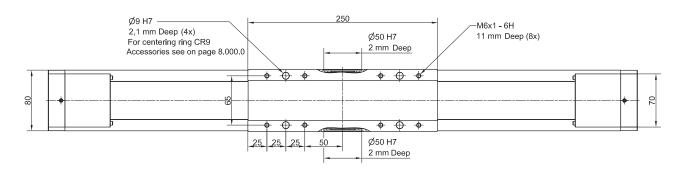


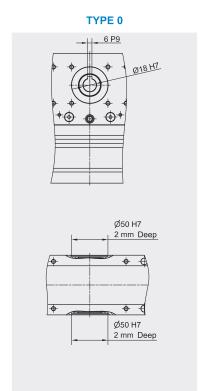

³For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valied for multi drive block (equation of defining the linear unit length for particular size of the linear unit needs to be used).

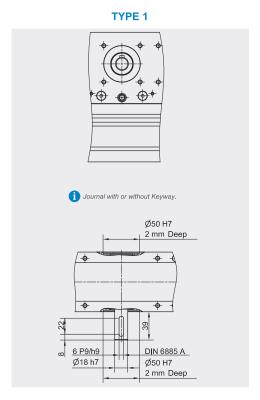
^{**}For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

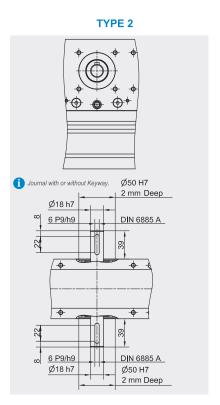
Deflection of the linear unit

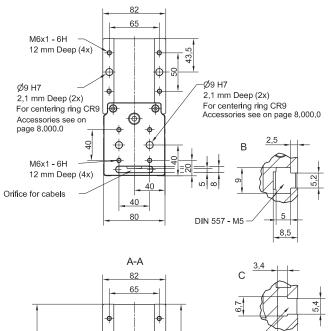


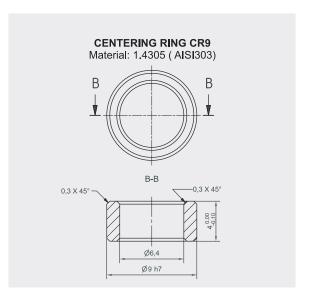


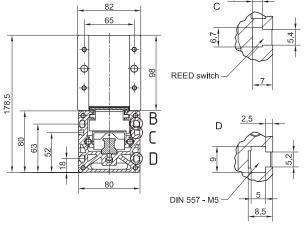

Linear Unit doesn't include any safety stroke.

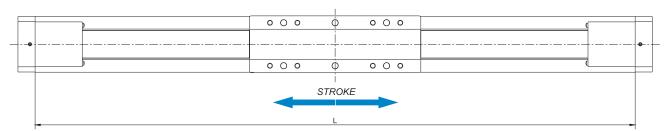

Absolute stroke = Effective stroke + 2 x Safety stroke



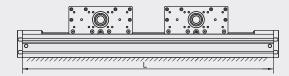



All dimensions in mm; Drawings scales are not equal.




0

All dimensions in mm; Drawings scales are not equal.


Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 382 mm

Ltotal = L + 44 mm

Multi drive block

L = Effective stroke + 2 × Safety stroke + 250 × n_b + 132 mm

n_b - number of drive blocks

Ltotal = L + 44 mm

General technical data

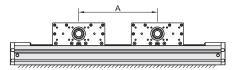
Linear Unit	Drive block length	i Dynamic load capacity	i Dyn	amic mor	nent	Mass of drive block	Maximum Repeatability	3 Max. length	3 Max. length	3 M: Str	ax. oke	Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	² (Version 1) Lmax [mm]	² (Version 2) Lmax [mm]	² (Ver. 1) [mm]	² (Ver. 2) [mm]	
MTJZ 110	300	49600	630	3470	3470	11,3	±0,08	1800	6000	1304	5504	65

¹For minimum stroke below the stated value in the table above please contact us.

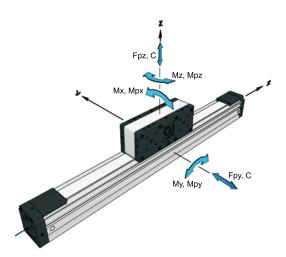
Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)


Modulus of elasticity: $E = 70000 \text{ N/mm}^2$


For operating temperature out of the presented range, please contact us.

²Mounting versions


Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive block travels

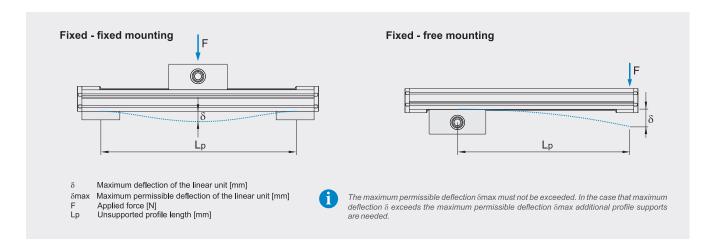
Multi drive blocks, which travel independently of each other, can be applied. For ordering code please contact us.

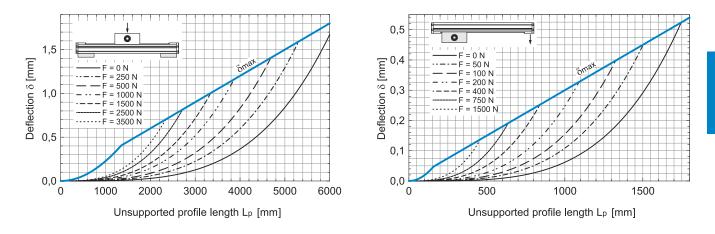
Drive and belt data

Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	Cspec [N]	[m/s ²]
MTJZ 110	5	110.0	2.6	300	95.49	AT10	70	2300	2450000	70

^{*}The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation.

Mass and mass moment of inertia

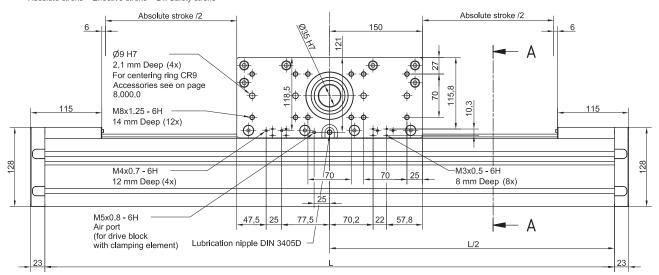

Linear Unit	Mass of linear unit	Mass moment of inertia of drive block		noment of ertia
	[kg]	[10 ⁻⁴ kg * m²]	ly [cm ⁴]	Iz [cm ⁴]
MTJZ 110	21,7 + 0,0147 * Stroke [mm]	273,0 + 0,3358 * Stroke [mm]	513,0	620,0

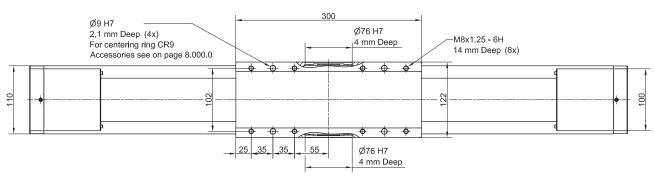


³For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valied for multi drive block (equation of defining the linear unit length for particular size of the linear unit needs to be used).

^{**}For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

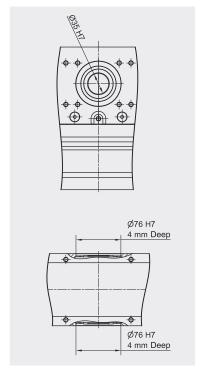
Deflection of the linear unit

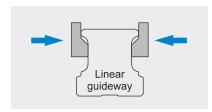




0

Linear Unit doesn't include any safety stroke.

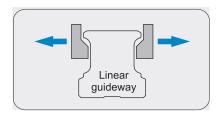

Absolute stroke = Effective stroke + 2 x Safety stroke


All dimensions in mm; Drawings scales are not equal.

TYPE 0

Drive block with clamping element

Clamping by spring-loaded energy

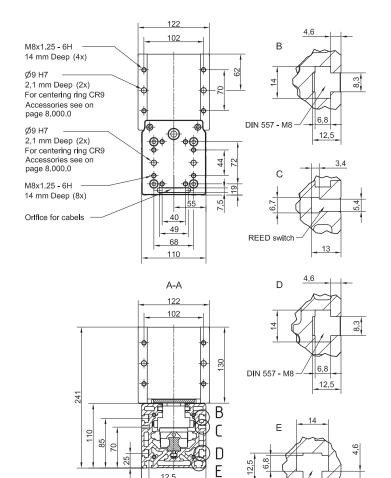


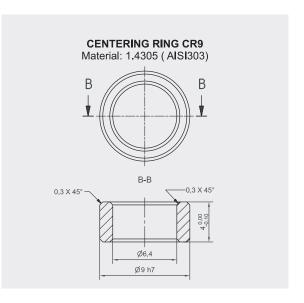
Air pressure = 0 bar

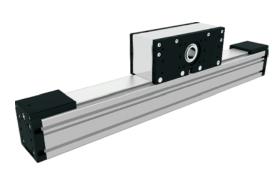
Holding force = 1400 N

Holding force is tested on clamping element using a slightly lubricated rail (ISO VG 68).

Opened by air pressure


Opening air pressure = 5,5 - 8 bar

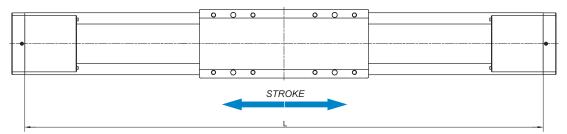



The air pressure opens clamping pistons. Free movement is allowed.

Purified and oiled air shall be used (according to ISO 8573-1 Class 4). Recommended filter size is 25 μm.

Linear	Unit	Mass of drive block	Mass of linear unit
Linear	J.III.	[kg]	[kg]
MTJZ	110	12,9	23,3 + 0,0147 * Stroke [mm]

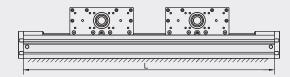
0


All dimensions in mm; Drawings scales are not equal.

110

Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 496 mm


Ltotal = L + 46 mm

8,3

DIN 557 - M8

Multi drive block

L = Effective stroke + 2 × Safety stroke + 300 × n_b + 196 mm

n_b - number of drive blocks

Ltotal = L + 46 mm

